2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Learning Local Planners for Human-aware Navigation
in Indoor Environments

Ronja Giildenring*!', Michael Gorner?, Norman Hendrich?, Niels Jul Jacobsen!, Jianwei Zhang?

Abstract— Established indoor robot navigation frameworks
build on the separation between global and local planners.
Whereas global planners rely on traditional graph search algo-
rithms, local planners are expected to handle driving dynamics
and resolve minor conflicts. We present a system to train neural-
network policies for such a local planner component, explicitly
accounting for humans navigating the space. DRL-agents are
trained in randomized virtual 2D environments with simulated
human interaction. The trained agents can be deployed as a
drop-in replacement for other local planners and significantly
improve on traditional implementations. Performance is demon-
strated on a MiR-100 transport robot.

I. INTRODUCTION

Autonomous indoor navigation of wheeled robots is one of
the fundamental problems in robotics [1]-[3]. In this context,
the environment is often modeled in 2D-space and grid ap-
proximations are used to represent free space and estimated
obstacles [4], which enables straightforward collision testing
and path planning. Systems employ traditional algorithms,
such as A*, Dijkstra’s algorithm, or Probabilistic Roadmaps,
to plan motion trajectories. While this graph-based planning
is computationally cheap, the resulting trajectories usually do
not adhere to the kinematics of the robot and do not account
for dynamic obstacles. These tasks are forwarded to a second
planning component, i.e., the local planner, which receives
current sensor inputs and generates control signals that move
the robot along the planned trajectory. In practical applica-
tion, local planners often employ established parameterized
approaches like the Dynamic Window Approach [5] or Elastic
Bands [6], [7]. These approaches can also be configured for
nonholonomic systems, e.g., Ackermann steering vehicles.

Traditional local planners only include perceived obstacles
as momentarily static because the current position of obsta-
cles can be directly measured through depth sensors. How-
ever, in populated indoor environments, many perceived ob-
stacles are caused by humans moving about, and navigating
as if they would remain static can result in unwanted close
encounters. One approach to include environment dynamics
in the planner is to fit and rely on data-driven models to
recognize other agents, predict their movement intention, and
include the resulting trajectories in local optimization [8], [9].
By contrast, we describe a system to train and deploy neural-
network policies for a local planner module with established

*Corresponding author (rog@mir-robots.com)

1 with MiR Mobile Industrial Robots A/S, 5220 Odense S@, Denmark.

2 with Department of Informatics, University of Hamburg, Germany.

This research was partially funded by the German Research Foundation
(DFG) and the National Science Foundation of China in project Crossmodal
Learning, TRR-169.

978-1-7281-6211-9/20/$31.00 ©2020 IEEE

(b)

Fig. 1: (a) The MiR-100 transport robot [10] navigating
a warehouse with walking humans. (b) The corresponding
scene in our DRL-agent simulation and training setup. It
includes static obstacles (black), the robot (gray rectangle),
the global motion plan with waypoints (blue), and pedestri-
ans (red). Two circles represent the legs of each pedestrian,
the arrow shows the walking direction and speed, while the
fine line shows the walking history.

reinforcement-learning paradigms. Agents can be trained in
simulation environments based on recorded maps of their
actual physical workspace. To achieve good behavior in close
encounters with humans, we explicitly integrate reactive
human movement based on crowd simulation models.

II. RELATED WORK

With the recent successes of deep reinforcement learning
approaches, indoor robot navigation has also become a
popular target application [11]-[13]. Tai et al. demonstrated
a learning setup for a differential-drive robot with a circular
footprint that is trained entirely in simulation and navigates
to relative goal locations [14]. The agent receives a low-
dimensional LIDAR sensor signal and learns to circumnav-
igate convex static obstacles. Kato et al. [15] improved on
this idea by integrating a global topological planner. They
proposed to model humans as pairs of circles but simplified
the motion patterns to constant linear paths for each circle.

To account for realistic dynamic interaction with pedestri-
ans, Kretzschmar et al. [8] presented a generative model,
trainable from data, for human navigation behavior. The
system operates through Monte-Carlo-Sampling on Voronoi
maps and deployment on a physical system requires a
dedicated perception module to detect human obstacles.

Fan et al. [16] extended an agent trained in simulation to
support reliable localization in crowded scenes. The agent

6053

monitors its localization belief and changes the controller to
navigate to nearby landmarks as needed. Of course, a loss
of localization usually only occurs in special places, e.g., the
canteen.

Faust et al. [17]-[19] presented a system that trains a
local navigation module in kinematic simulation, directly
optimizing hyperparameters at the cost of severe computa-
tional overhead. The resulting policy is applied as a local
planner in a global roadmap approach, where it influences
roadmap generation. Their physical evaluation demonstrates
impressive results but show-cases a differential-drive system
with a small round footprint.

A different DRL approach for dynamic multi-agent navi-
gation was proposed in the work of Everett et al. [20]. Instead
of working with raw sensor data, a recursive LSTM network
is fed with preprocessed agent positions during each time
step, learning to focus on the nearest other agents.

In this paper, we provide a full system to simulate and
train RL agents for local navigation of indoor robots in the
presence of walking humans. Our novel training environment
includes simulated reactive human agents based on crowd
simulation approaches and directly integrates into the ROS
navigation stack [21]. We exemplarily investigate the effect
of different state representations for two typical deep network
architectures under appropriate shaped rewards. The trained
agents outperform baseline local planners, show human-
aware driving behavior, and work well in tests on the real
robot (Fig. 1).

III. METHODS
A. SIMULATION

Despite recent progress in computer-vision-based nav-
igation approaches, 2D laser scanners (LIDARs) remain
the most popular sensors for indoor robot navigation. The
sensors are affordable and generate high-quality low-noise
range measurements. Therefore, we decided to restrict our
simulation environment for training the DRL-agent to a 2D
world, taking into consideration only 2D laser scan sensors.
Compared to 3D simulators (e.g. [22]-[24]), this significantly
reduces the computational effort, contributing to faster train-
ing. Also, the 2D range scanner simulation approximates the
real world sensors sufficiently well to expect an easy transfer
from simulation to the real world.

Fig. 2 illustrates the overall architecture of our system,
which combines the existing tools PedSim [25] and Flatland
[26] to provide a ROS-based [27] environment that generates
realistic and natural robot and pedestrian movements.

PedSim Crowd Simulator: Realistic simulation of interact-
ing walking humans is not easy and can lead to computa-
tionally expensive representations [8]. In PedSim, individual
pedestrians move according to Helbing’s social forces model
[28], [29]. The model combines different potential fields,
arising from the goal, static obstacles and other pedestrians.
Potential field approaches are simple enough to compute
to utilize them in accelerated simulations for RL, but they
can also get the agents stuck in local minima, increasing
significantly with the complexity of the static map. For that

Simulation — Map Navigation goal
Pedsim_ros Flatland
pacsatan || || swticobstaces || | oot
i ervati |
behavior - | space: | global planner
pedestrians ' 1
\ pedsim_pos/vel | waypoints | .
leg motion ! laser scans | waypoints
. H
robot model //\
diff_drive state local planner
virtual Lidars .
action PPO-agent

Fig. 2: Main components of our simulation environment.
Human walking trajectories are calculated by Pedsim_ros.
The Flatland simulator manages obstacles and the moving
robot, and also generates pedestrian leg motion patterns. The
DRL-agent observes the simulated laser scans and learns to
control the robot motion to follow the target waypoints.

(a) (b)

Fig. 3: (a) A pedestrian tries to reach the waypoint behind
a static obstacle, but is stuck in a local minimum of the
potential field. (b) The pedestrian walks from waypoint 1
to waypoint 2, but the robot blocks the direct path. The red
dotted line shows the path taken by the pedestrian instead.

reason, we disabled the influence of static objects on pedes-
trians in our simulation and accepted in return pedestrians
walking through static objects, resulting in a more unrealistic
behavior. Furthermore, we extend the force model with an
additional exponential repellent force arising from the robot
center. This prevents pedestrians from walking into the robot
footprint. But as a crucial difference to the pedestrian forces,
the robot force is only applied after the robot stands still
for some time ¢,.¢,.. This modification simulates pedestrians
who expect the robot make way during operation, but actively
avoid a stationary robot. Fig. 3 shows example behaviors of
a simulated pedestrian.

Flatland Simulator: We use Flatland [26] as base 2D
simulator. It can run simulations significantly faster than
realtime, a static environment can be created simply by
loading a previously recorded grid map, and provides in-
terfaces compatible with ROS’s move_base stack. Additional
objects, composed of geometric primitives, can be loaded
and removed dynamically.

The model of the robot consists of a single polygon
that represents the footprint of the real robot. To reduce
computation time, we do not simulate physical aspects like
joint translations, motors torques, friction properties, and
acceleration profiles. The laser scan sensors are simulated
through the existing laser plugin of Flatland, which also
models Gaussian measurement noise. We add two artificial

6054

Phase2 | Phase3
N

Jal

Unlikely state in
human walking

vl il e

Phase 0 Phase 1 Phase 4 | Phase 5 t
\)

Left leg"Stance
Right leg: swing

Left legswing
Right leg; stance

Left leg? stance
Right leg; stance

Left log: swing
Right leg; swing

Fig. 4: Different phases of a simple leg movement model
for human walking. One leg swings at a time and follows a
triangular velocity function, while the other leg remains sta-
tionary [30]. Key parameters, such as velocity and physique,
are randomized in our application.

laser scans “static_laser” and “ped_laser” to the center of
the robot, which perceive only static obstacles or pedestri-
ans, respectively. These auxiliary scans allow distinguishing
between both obstacle types during rewarding (see section
III-C.5) and are merged to yield the full simulated sensor
output. The differential drive of the robot is modeled with
the Flatland diff_drive plugin.

Pedestrian Plugin: To implement the human trajectories
calculated by PedSim in Flatland, we created a pedestrian
plugin. In the 2D world, each pedestrian is modeled with
two circles, representing the legs as perceived in the robot
laser scanner. The plugin takes PedSim’s calculated velocity
and position of each pedestrian and then adds a leg-swinging
motion. One leg at a time swings according to a triangular
velocity function. To yield a commanded overall body veloc-
ity of v, the leg linearly accelerates to a maximum velocity of
4.v, followed by a constant deceleration to 0 m/s. During that
period of time, the other leg remains in the same position. As
real humans have different walking and movement behaviors,
we apply domain randomization to key model parameters
of the walking pattern, such as leg velocities, leg size and
spacing. Fig. 4 illustrates the walking model pattern.

B. TASK SETUP

The task of the RL-agent (local planner) is to navigate
successfully from a start to a goal position along a given
global path while reacting to local objects that have not been
considered by the global plan. The agent gets a representation
of its environment as input and it interacts with the environ-
ment by controlling the translational and rotational velocity
(v,w) of the robot. We consider two kinds of objects: global
static objects (black) and pedestrians (red). Global static
objects are fixed objects that are listed in the global map.
Pedestrians are moving objects that are not present in the
global map, but are detected by the laser scan sensors. For
each episode, a new random start and goal position is picked,
resulting in a global plan computed by the global planner.
Thereafter pedestrians, that either cross the path, walk along
the path, or stand around close to the path, are spawned
randomly. The walking speed of each pedestrian is sampled

from a normal distribution and is on average 0.6 m/s—
slower than the robots maximum velocity of 0.8m/s. An
episode is considered a success if the robot reaches the final
goal within 0.4m. Fig. 1b shows an example episode.

C. AGENT MODELS

1) Deep Reinforcement Learning Approach: We use Prox-
imal Policy Optimization (PPO) [31] as our main Reinforce-
ment Learning approach and build on the implementation
from the open-source project stable-baselines [32]. The deep
learning part is realized in the Tensorflow framework [33]
and allows us to define policy-networks applying Adam
Optimization [34].

2) State Representations: The observation state that has
been identified as relevant for the agent to be able to fulfill
the task includes:

o Waypoints. The global plan is downsampled to a num-
ber of waypoints with a fixed distance to each other. A
vector of the next n,,, sequential waypoints [z;, y;] is
provided.

o Laser scan data. In the simulation environment, the
static_laser and ped_laser scan data are merged, covering
360° around the robot, and providing a distance value
for each angle increment. The vector is discretized to a
resolution res. While such a laser does not exist on the
real robot, we can fuse multiple orthogonal scanners to
yield the same representation there.

We compare two different state representations:

a) RawData Representation: The laser scan vector of
distance values and the (z, y)-positions of the n,,, waypoints
are directly fed into the network.

b) Image Representation: Convolutional Neural Net-
works (CNNs) have been particularly successful with images
in the past years. For that reason, we explore an image-
based observation space representation, too. Fig. 5 shows a

.' .

(a) (b) (©)

Fig. 5: Image representation constructed from laser scan and
waypoint vector. (a) Example scene with the robot pointing
upwards. (b) The input image generated from the scene in
robot-centric orientation. The image includes a white line
from the robot location along the next waypoints, as well
as black lines from each scan line pointing away from the
robot, starting at the reported distance to an obstacle. White
pixels: goal trajectory; gray pixels: free space; black pixels:
obstacles or unknown. (¢) Overlay of (a) and (b).

6055

TABLE I: 5-layered 1D-Conv-network.

o . Filter Filter
Layer | Type | Activation Size Size Stride
1 Conv ReLu 32 Filter 5x1 2x0
2 Conv ReLu 64 Filter 3x1 2x0
3 FC ReLu 256 Neurons - -
4 FC ReLu 128 Neurons - -
5 FC Linear Output Size - -
TABLE II: 5-layered 2D-Conv-network.
o . . Filter Filter
Layer | Type | Activation Size Size Stride
1 Conv ReLu 32 Filter 8 X 8 4 x4
2 Conv ReLu 64 Filter 4 x4 2 X2
3 Conv ReLu 64 Filter 3 x3 1x1
4 FC ReLu 512 Neurons - -
5 FC Linear Output Size - -

sample scene and the corresponding generated input image.
The robot is always positioned at the lower center, pointing
upwards, thus including more space in the robot’s driving
direction. A white line is drawn from the robot location along
the upcoming waypoints.

3) Action Space: Continuous as well as discrete action
space has been investigated. For the continuous action space,
limits for the translational velocity (0, v,q4,) and angular
velocity (—wmaz,Wmae) are defined. The discrete action
space allows six discrete actions, that are combinations
of translational and angular velocities: (0,0), (0, —wWmaz),
(01 wmar), (Umama 0), (vmax» wmam/2)s (Umaxa _wmaaz/2)-

4) Neural Network Structures: We use two different net-
work architectures which have already proven successful in
similar learning tasks. They are applied for both the Actor
as well as the Critic Network of the PPO algorithm and are
initialized with orthogonal matrix initialization [35].

Table I shows a 1D-Convolutional-Network that is used
in combination with the RawData Representation and is
inspired by the work of Long and Fan [13]. It consists of
5 layers: two 1D-Convolutional layers, followed by three
fully-connected layers. A ReLU activation function is applied
to all hidden layers. The laser scan vector of the RawData
Representation is processed by layer one of the network,
while the n,,, closest waypoints are concatenated with the
output of layer three and are then forwarded to layer four.
The fifth layer finally maps to the output size that varies
according to the applied action space type (continuous: 2,
discrete: 6).

Table II provides the network architecture for the Image
Representation and is the default 2D-Convolutional Network
of stable-baselines [32] and inspired by DQN [36]. It consists
of 5 layers: three 2D-Convolutional layers, followed by two
fully-connected layers. Again, a ReLU activation function is
applied to all hidden layers.

5) Reward Function: Structured rewards are a key factor
to achieve complient behavior and improve learning speed.
The following equations describes the general influences,
Table III gives the concrete parameter values used in our
evaluation. Our reward function considers four summands
regarding the final goal g, the closest waypoint wp, the

obstacles o and the velocity of the robot vel.
Rt = Rt(g) + Rt(wp) + Rt(O) + Rt<U€l) (1)

The reward R;(g) contributes with a high positive constant
R, if the position of the robot p, reaches the goal position
pg within radius D,.

R if ||pt — <D
Ru(g) = { s i Ik = pll < Dy °

0 otherwise

The agent at position p’. is awarded for getting closer to
the next waypoint pfﬂp in equation 3, but it is punished for
driving away from it in equation 4. The diff()-function in
equation 5 determines the difference between the distance of
the agent to the next waypoint of the previous time step and
its current distance.

Ri(wp) = 4 diff(prs Pp) I diff(or, prp) > 0 g
t 0 otherwise
t 0 otherwise

diff(p plop) = [P = Pl [| = Ik = Pll|)

Ry(wp) = Ry (wp) + R (wp) (6)

Of course, the agent is punished for colliding with obstacles,
distinguishing between static objects (so) and pedestrians
(ped). This enables the agent to approach static objects closer
while keeping a higher safety distance from moving objects.
If the agent collides with a static object € SO, it results
in a high negative constant R, (see equation 8). To train
the agent to avoid pedestrians with more space, the agent is
already punished negatively if it ends up in the circular area
of radius D4 around any pedestrian. Since the pedestrians
are moving as well, it is not always possible for the agent
to keep the demanded distance to all pedestrians, e.g., in
crowded or narrow situations. For that reason, the agent
does not get punished for being too close to a pedestrian
if it stopped moving for some time t,.,. and the pedestrian
caused the close encounter. This motivates the agent to detect
upcoming critical situations and wait for the pedestrians to
pass. Equation 9 summarizes the rewarding of interactions
with pedestrians.

R;(0) = min(Ry(s0), R;(ped)) @)

Ru(s0) —Rs, if collision with object € SO
50) =
’ 0 otherwise

®)

0 if Vped;: ||Ppeq, — Pl > Dpea
Ri(ped) = or vel = 0 for duration #,cqc

—Rpeq otherwise

€))

6056

TABLE III: Experimental reward parameterization.

Parameter description Parameter | Value
distance threshold to pedestrians Dped 0.85
distance threshold within goal is reached Dy 0.4
constant for reaching the goal Ry 10
constant for being to close to a pedestrian Rped 7
constant for colliding with static obstacles Rso 7
constant for standing still Rll;ez 0.001
constant for turning only 12)el 0.01
reaction time of pedestrians treac 0.8
weight for approaching a waypoint wrl 4.5
weight for departing from a waypoint w2 55

Equation 10 shows the definition of Ry;(vel) in more detail.
To avoid stalling, the agent is punished for not moving. As
this, however, encourages irresolute small rotational motions
when the way is temporarily blocked, standing completely

still is punished less than turning in place —R!_, > —R? ;.

—R},, ifvel;=0and w, =0
Ri(vel) = ¢ —R%, if vel; =0 (10)
0 otherwise

IV. EVALUATION

Table IV summarizes the agent setups that have been eval-
vated and compared with the well-known traditional local
planner Dynamic Window Approach (DWA) [5]. Each agent
is trained in parallel simulation environments with maps of
varying complexity. Agents A/-ID and AI-RD both apply
discrete action space, but differ in their state representation
and corresponding deep neural network. A3-RD and AI-RC
are variants of A/-RD, where A3-RD is trained on a time
series by processing a stack of three raw data vectors, where
each vector represents a different time stamp with a time
offset of 1.5 sec. AI-RC applies continuous action space.
Each agent setup has been trained and tested five times to
estimate performance variances. Since GPU acceleration did
not have a significant impact on the overall training time, the
agents were trained on CPU only for ~ 18, 5h.!

Fig. 6 shows the training results of all four agent setups,
where 6a shows the success rate and 6b shows the time-
exceeded rate over time. An episode counts as a success if
the agent navigates to the goal without violating a distance
threshold to static or dynamic objects (see section III-C.5).
The time-exceeded rate sums up all episodes in which the
agent did not finish in time, but also did not come to

'AI-ID trained in ~ 35h mostly due to a costly implementation of the
image processing

TABLE IV: Agent setups evaluated in section IV.

Agent Name Al1-ID A1-RD A3-RD Al1-RC
Action Space discrete | discrete discrete continuous
R Input . Image 1-RawData | 3-RawData | 1-RawData
epresentation
Network
Architecture Table II Table I

Success rate
e o o o o
N w - w [=2]

©
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step le7

(a) Success rate

0.7
o]
© 0.6
T
(1)
B 0.5
[
153
>
[
o 0.4
£
£
0.3
0.0 0.5 1.0 15 2.0 2.5 3.0
Time step le7

(b) Time-exceeded rate

Fig. 6: Training results of the different agent setups from
Table IV. For each setup, five agents are trained and the
average success and time-exceeded rates are determined. The
average over 2000 consecutive episodes is plotted.

close to any obstacles. For the first one million steps, the
image-based representation makes progress slightly faster
than agents trained on raw distance information, indicating
facilitated training through the explicit spacial representation.
However, after this point, all agents with a discrete action
space perform comparable, which implies that similar infor-
mation becomes evident over the course of longer training
independent of the processed representation. A/-ID, AI-RD
and A3-RD overall show very similar learning curves, while
AI-RD learns slightly better with a success rate of ~ 0.62
and a time-exceeded rate of ~ 0.3, resulting in a fairly low
collision rate of ~ 0.08. The expectations of A3-RD are not
met since it does not perform significantly better than Al-
RD, although a time-series of input data is provided. Al-
RC is significantly less successful, traced back to the higher
complexity of controlling in continuous action space.

Fig. 7 shows the test results for all agents as well as the
traditional local planner DWA. We used new, unknown maps
and tested them in three different testing task setups:

A In a map of average complexity (Fig. 8a) with mainly
wide spaces, episodes are spawned according to section
111-B.

B Episodes are spawned according to section III-B in a
map of medium complexity (Fig. 8b) with narrow
corridors.

C Paths without pedestrians are spawned in map 8b. The
robot simply needs to follow the globally planned path
(aka “pure pursuit”).

6057

10

0.8

0.6

0.4

rate
[collision
[time-exceeded
[success
0.0 —

0.2

B
Pedestrian avoidance in
complex map 6(b)

A
Pedestrian avoidance in
simple map 6(a)

Pure pursuit in
complex map 6(b)

Fig. 7: Test results of the four different RL-agent setups as
well as the traditional local planner DWA. All approaches
solved 700 dynamic tasks in three different testing task
setups each. For each task setup and agent the average
success, time-exceeded and collision rate is shown. AI-RD
and A3-RD significantly outperform DWA.

The success rate during testing differs slightly from the
one during training, because an episode counts as a suc-
cess if the robot drives to the goal without collisions.
No differentiation between static and dynamic objects is
made during testing. All agents, as well as the DWA local
planner, are able to follow a path in a static environment
(task setup C) with a success rate of 0.97 or better. In
task setup A, all of AI-ID, AI-RD and A3-RD reach an
average success rate over 0.86, while A/-RC only reaches
an average success rate of 0.73. For all agents, the time-
exceeded rate is relatively low with ~0.03. In task setup B,
the time-exceeded rate increases, because complex episodes
in corridors occur more frequently. In those situations, the
robot stops and waits for the pedestrians to pass, sometimes
resulting in deadlocks. Additionally, the collision rate (avoid-
ing immediate collisions) increases from task setup A to B.
The comparison between the RL-agents and the DWA local
planner should be considered with caution because there are
relevant differences between the planners. The DWA planner
is allowed to trigger a re-plan from scratch when stuck,
while that mechanism was not available for our RL-agents.
In contrast, the RL-agents can act on shapes and changes
in the environment, while the DWA-planner certainly has
no pre-knowledge about the environment. Fig. 9 shows two
qualitative representative episodes of how the A/-RD trained

[N

Fig. 8: Test Maps. (a) A test map of an average complexity
with mainly wide spaces. (b) A test map of high complexity
with narrow corridors and outer corners.

Seq a

Seg b

Time
Fig. 9: Example robot behavior. (a): The robot encounters a
pedestrian in a narrow passage. It stops and waits until the
pedestrian has passed. (b): The robot avoids the approaching
pedestrians actively with enough space, before continuing on
the global path.

agent behaves.

V. DEPLOYMENT

As the agents only receive laser scan input, the straight
transfer to the real system does not require additional modi-
fications. We deployed the trained agents to the real MiR-100
robot [10], and tested them in situations comparable to the
training and test setups (Fig. 1 and Fig. 10). The environment
was similar to the maps in Fig. 8, pedestrians walked slowly.
The agent learned very well to stop and wait for a pedestrian
to pass and to continue driving afterwards. It can occur,
that the agent does not avoid obstacles in time and ends up
in a stopping-and-waiting state, although there was initially
enough space for proper maneuvering. Unfortunately, the
robot running the (discrete action) agents often followed
the path in an oscillating manner, due to the discretized
high yaw-rotation velocities. As a consequence, the robot
sometimes approaches walls in narrow corridors closer than
in simulation, possibly resulting in a stopping-and-waiting
state. We expect that modeling the dynamics properties of
the robot controller in simulation can improve this behavior.

VI. CONCLUSION

We created a system for training an agent to control a
mobile robot in environments with active pedestrians. The
project is publically available at: https://github.com/RGring/
drl_local_planner_ros_stable_baselines and can be used to
train and deploy agents on custom maps.

Initial results are very promising, but further application-
specific refinements are necessary to allow safe deployment
in the real world. Most importantly, the RL-agent should be
able to trigger global re-planning or other recovery behaviors
in unsolvable situations to avoid deadlocks. Also, the relevant
physical properties of the robot should be simulated; this
becomes more relevant at higher robot velocities. The results
of AI-RD and A3-RD indicate that the RL-Agent trained
on sequences of inputs does not sufficiently account for

6058

Fig. 10: Real-world test using the MiR-100 robot. See
attached video for more examples and scenarios.

the observable motion pattern of the pedestrians yet and
might profit from recurrent policy representations. Finally,
more advanced pedestrian behaviors, like group walking and
gathering, could be modeled, drawing on studies in human
movement behavior.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

REFERENCES

M. Hoy, A. S. Matveev, and A. V. Savkin, “Algo-
rithms for collision-free navigation of mobile robots in
complex cluttered environments: A survey,” Robotica,
vol. 33, no. 3, pp. 463-497, 2015. por: 10.1017/
S0263574714000289.

D. Gonzalez, J. Pérez, V. Milanés, and F. Nashashibi,
“A review of motion planning techniques for au-
tomated vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 4, pp. 1135-1145,
Apr. 2016. DOI: 10.1109/TITS.2015.2498841.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch,
“Human-aware robot navigation: A survey,” Robotics
and Autonomous Systems, vol. 61, no. 12, pp. 1726—
1743, 2013. por: 10.1016/j.robot.2013.05.007.

A. Elfes, “Using occupancy grids for mobile robot
perception and navigation,” Computer, vol. 22, no. 6,
pp. 46-57, 1989. por: 10.1109/2.30720.

D. Fox, W. Burgard, and S. Thrun, “The dynamic win-
dow approach to collision avoidance,” IEEE Robotics
Automation Magazine, vol. 4, no. 1, pp. 23-33, 1997.
DOI: 10.1109/100.580977.

S. Quinlan and O. Khatib, “Elastic bands: Connecting
path planning and control,” in Proceedings IEEE In-
ternational Conference on Robotics and Automation,
1993, 802-807 vol.2. por: 10.1109/ROBOT.1993.
291936.

C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann,
and T. Bertram, “Trajectory modification consider-
ing dynamic constraints of autonomous robots,” in
ROBOTIK 2012; 7th German Conference on Robotics,
2012, pp. 1-6. [Online]. Available: https://ieeexplore.
ieee.org/document/6309484.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard,
“Socially Compliant Mobile Robot Navigation via
Inverse Reinforcement Learning,” The International
Journal of Robotics Research, vol. 35-11, pp. 1289—
1307, 2016. por: 10.1177/0278364915619772.

H. Chen, X. Wang, and J. Wang, “A trajectory plan-
ning method considering intention-aware uncertainty
for autonomous vehicles,” in 2018 Chinese Automa-
tion Congress (CAC), 2018, pp. 1460-1465.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

6059

Mobile Industrial Robots A/S. (2019). MiR100 robot,
[Online]. Available: https://www.mobile-industrial -
robots.com/en/products/mir100/.

N. V. Dinh, N. H. Viet, L. A. Nguyen, H. T. Dinh,
N. T. Hiep, P. T. Dung, T. Ngo, and X. Truong,
“An extended navigation framework for autonomous
mobile robot in dynamic environments using rein-
forcement learning algorithm,” in 2017 International
Conference on System Science and Engineering (IC-
SSE), Jul. 2017, pp. 336-339. por: 10.1109/ICSSE.
2017.8030892.

S. Han, H. Choi, P. Benz, and J. Loaiciga, “Sensor-
Based Mobile Robot Navigation via Deep Reinforce-
ment Learning,” in 2018 IEEE International Confer-
ence on Big Data and Smart Computing, Jan. 2018,
pp. 147-154. por: 10.1109/BigComp.2018.00030.

P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J.
Pan, “Towards Optimally Decentralized Multi-Robot
Collision Avoidance via Deep Reinforcement Learn-
ing,” Computing Research Repository (CoRR), 2017.
[Online]. Available: http://arxiv.org/abs/1709.10082.
L. Tai, G. Paolo, and M. Liu, “Virtual-to-real Deep
Reinforcement Learning: Continuous Control of Mo-
bile Robots for Mapless Navigation,” International
Conference on Intelligent Robots and Systems (IROS),
pp- 31-36, 2017. por: 10.1109/IROS.2017.8202134.
Y. Kato, K. Kamiyama, and K. Morioka, “Autonomous
robot navigation system with learning based on deep
Q-network and topological maps,” in IEEE/SICE In-
ternational Symposium on System Integration, SII
2017, Taipei, Taiwan, 2017, pp. 1040-1046. po1: 10.
1109/S11.2017.8279360.

T. Fan, X. Cheng, J. Pan, P. Long, W. Liu, R. Yang,
and D. Manocha, “Getting Robots Unfrozen and Un-
lost in Dense Pedestrian Crowds,” Computing Re-
search Repository (CoRR), 2018. [Online]. Available:
http://arxiv.org/abs/1810.00352.

A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis,
J. Davidson, and L. Tapia, “PRM-RL: Long-range
Robotic Navigation Tasks by Combining Reinforce-
ment Learning and Sampling-based Planning,” in In-
ternational Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 2018, pp. 5113-5120.
DOI: 10.1109/ICRA.2018.8461096.

H. L. Chiang, A. Faust, M. Fiser, and A. Francis,
“Learning Navigation Behaviors End-to-End With Au-
toRL,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 2007-2014, 2019. por1: 10.1109/LRA.2019.
2899918.

A. Francis, A. Faust, H. L. Chiang, J. Hsu, J. C.
Kew, M. Fiser, and T. E. Lee, “Long-range indoor
navigation with PRM-RL,” CoRR, 2019. [Online].
Available: http://arxiv.org/abs/1902.09458.

M. Everett, Y. F. Chen, and J. P. How, “Motion
planning among dynamic, decision-making agents
with deep reinforcement learning,” in 2018 IEEE/RSJ

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2018, pp. 3052-3059. [Online].
Available: https://arxiv.org/abs/1805.01956.

E. Marder-Eppstein et al. (2020). ROS Navigation
stack, [Online]. Available: https://github.com/ros-
planning/navigation.

N. Koenig and A. Howard, “Design and use paradigms
for Gazebo, an open-source multi-robot simulator,”
in 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), vol. 3, 2004,
pp. 2149-2154. po1: 10.1109/iros.2004.1389727.
Coppelia Robotics. (2019). V-rep virtual robot exper-
imentation platform, [Online]. Available: http://www.
coppeliarobotics.com/.

Cyberbotics Inc. (2019). Webots robot simulator, [On-
line]. Available: https://www.cyberbotics.com/.

B. Okal, T. Linder, D. Vasquez, and L. P. Sven Wehner
Omar Islas, Pedsim_ros, 2018. [Online]. Available:
https://github.com/srl-freiburg/pedsim_ros.

Avidbots, Flatland, 2018. [Online]. Available: https:
//github.com/avidbots/flatland.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T.
Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS:
an open-source Robot Operating System,” in /CRA
Workshop on Open Source Software.

Christian Gloor, PedSim Crowd Simulator, 2016. [On-
line]. Available: http://pedsim.silmaril.org/download/.
P. M. Dirk Helbing, “Social force model for pedestrian
dynamics,” Physical Review E 51, pp. 4282-4286,
1995. por: 10.1103/PhysRevE.51.4282.

6060

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. Yorozu, T. Moriguchi, and M. Takahashi, “Im-
proved Leg Tracking Considering Gait Phase and
Spline-Based Interpolation during Turning Motion in
Walk Tests,” Sensors, vol. 15, no. 9, pp. 22451-
22472, 2015. por: 10.3390/s150922451.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, ‘“Proximal Policy Optimization Al-
gorithms,” Computing Research Repository (CoRR),
2017. [Online]. Available: http://arxiv.org/abs/1707.
06347.

A. Hill, A. Raffin, M. Ernestus, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A.
Radford, J. Schulman, S. Sidor, and Y. Wu, Stable
Baselines, https://github.com/hill-a/stable-baselines,
2018.

Martin Abadi, Ashish Agarwal, et al., TensorFlow:
Large-Scale Machine Learning on Heterogeneous Sys-
tems, Software available from tensorflow.org, 2015.
[Online]. Available: http://tensorflow.org/.

D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” International Conference on Learning
Representations, Dec. 2014. [Online]. Available: http:
/larxiv.org/abs/1412.6980.

A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact

solutions to the nonlinear dynamics of learning in
deep linear neural networks,” CoRR, 2013. [Online].

Available: http://arxiv.org/abs/1312.6120.

V. Mnih, K. Kavukcuoglu, et al., “Human-level con-
trol through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1038/nature14236.

